
    Pgj$                     ,    d dl mZ  G d de      ZdgZy)   )PretrainedConfigc                        e Zd ZdZdZdgZddddddddZdgdgfd	d
gd	gfd	gd	gfdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZ	S )Gemma2Configa  
    This is the configuration class to store the configuration of a [`Gemma2Model`]. It is used to instantiate an Gemma2
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Gemma2-7B.
    e.g. [google/gemma2-7b](https://huggingface.co/google/gemma2-7b)
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.
    Args:
        vocab_size (`int`, *optional*, defaults to 256000):
            Vocabulary size of the Gemma2 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Gemma2Model`]
        hidden_size (`int`, *optional*, defaults to 2304):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 9216):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 26):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 4):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        head_dim (`int`, *optional*, defaults to 256):
            The attention head dimension.
        hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
            The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
            if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
        max_position_embeddings (`int`, *optional*, defaults to 8192):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 0):
            Padding token id.
        eos_token_id (`int`, *optional*, defaults to 1):
            End of stream token id.
        bos_token_id (`int`, *optional*, defaults to 2):
            Beginning of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `True`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        query_pre_attn_scalar (`float`, *optional*, defaults to 256): scaling factor used on the attention scores
        sliding_window (`int`, *optional*, defaults to 4096): in Gemma2, every other layer uses sliding window attention. This is the
            size of the sliding window.
        final_logit_softcapping (`float`, *optional*, defaults to 30.0): scaling factor when applying tanh softcapping on the logits.
        attn_logit_softcapping (`float`, *optional*, defaults to 50.0): scaling factor when applying tanh softcapping on the attention scores.
        cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`.

    ```python
    >>> from transformers import Gemma2Model, Gemma2Config
    >>> # Initializing a Gemma2 gemma2-7b style configuration
    >>> configuration = Gemma2Config()
    >>> # Initializing a model from the gemma2-7b style configuration
    >>> model = Gemma2Model(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```gemma2past_key_valuescolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                 F   t        |   d||||d| || _        |	| _        || _        || _        || _        || _        || _        || _	        |
| _
        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        y )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings )super__init__
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headshead_dimnum_key_value_headsinitializer_rangerms_norm_eps	use_cache
rope_thetaattention_biasattention_dropouthidden_activationquery_pre_attn_scalarsliding_windowfinal_logit_softcappingattn_logit_softcappingcache_implementation)selfr   r   r   r   r   r    r   r'   r   r!   r"   r#   r   r   r   r   r$   r%   r&   r(   r)   r*   r+   r,   kwargs	__class__s                             v/var/www/html/suriana-translation/venv/lib/python3.12/site-packages/transformers/models/gemma2/configuration_gemma2.pyr   zGemma2Config.__init__s   s    8 	 	
%%% 3		

 	
 %'>$&!2!2#6  #6 !2("$,!2!2%:",'>$&<#$8!    )i  i 	  i $              gelu_pytorch_tanhi    g{Gz?gư>T          Tg     @Fg        r5   i   g      >@g      I@hybrid)
__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr   __classcell__)r/   s   @r0   r   r      s    FP J#4"5%.%.%.%."+ )"+ &(9:#%568IJ!"_$56 - $ ! $#%369 69r1   r   N)configuration_utilsr   r   __all__r   r1   r0   <module>rF      s$   , 4P9# P9f 
r1   