
    PgW                     H    d Z ddlZddlZddgZ G d d      Z G d d      Zy)zAutograd anomaly mode.    Ndetect_anomalyset_detect_anomalyc                   2    e Zd ZdZdd	dZd	dZdeddfdZy)
r   a  Context-manager that enable anomaly detection for the autograd engine.

    This does two things:

    - Running the forward pass with detection enabled will allow the backward
      pass to print the traceback of the forward operation that created the failing
      backward function.
    - If ``check_nan`` is ``True``, any backward computation that generate "nan"
      value will raise an error. Default ``True``.

    .. warning::
        This mode should be enabled only for debugging as the different tests
        will slow down your program execution.

    Example:
        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_ANOMALY)
        >>> import torch
        >>> from torch import autograd
        >>> class MyFunc(autograd.Function):
        ...     @staticmethod
        ...     def forward(ctx, inp):
        ...         return inp.clone()
        ...     @staticmethod
        ...     def backward(ctx, gO):
        ...         # Error during the backward pass
        ...         raise RuntimeError("Some error in backward")
        ...         return gO.clone()
        >>> def run_fn(a):
        ...     out = MyFunc.apply(a)
        ...     return out.sum()
        >>> inp = torch.rand(10, 10, requires_grad=True)
        >>> out = run_fn(inp)
        >>> out.backward()
            Traceback (most recent call last):
              File "<stdin>", line 1, in <module>
              File "/your/pytorch/install/torch/_tensor.py", line 93, in backward
                torch.autograd.backward(self, gradient, retain_graph, create_graph)
              File "/your/pytorch/install/torch/autograd/__init__.py", line 90, in backward
                allow_unreachable=True)  # allow_unreachable flag
              File "/your/pytorch/install/torch/autograd/function.py", line 76, in apply
                return self._forward_cls.backward(self, *args)
              File "<stdin>", line 8, in backward
            RuntimeError: Some error in backward
        >>> with autograd.detect_anomaly():
        ...     inp = torch.rand(10, 10, requires_grad=True)
        ...     out = run_fn(inp)
        ...     out.backward()
            Traceback of forward call that caused the error:
              File "tmp.py", line 53, in <module>
                out = run_fn(inp)
              File "tmp.py", line 44, in run_fn
                out = MyFunc.apply(a)
            Traceback (most recent call last):
              File "<stdin>", line 4, in <module>
              File "/your/pytorch/install/torch/_tensor.py", line 93, in backward
                torch.autograd.backward(self, gradient, retain_graph, create_graph)
              File "/your/pytorch/install/torch/autograd/__init__.py", line 90, in backward
                allow_unreachable=True)  # allow_unreachable flag
              File "/your/pytorch/install/torch/autograd/function.py", line 76, in apply
                return self._forward_cls.backward(self, *args)
              File "<stdin>", line 8, in backward
            RuntimeError: Some error in backward

    returnNc                     t        j                         | _        || _        t        j                         | _        t        j                  dd       y )NzqAnomaly Detection has been enabled. This mode will increase the runtime and should only be enabled for debugging.   )
stacklevel)torchis_anomaly_enabledprev	check_nanis_anomaly_check_nan_enabledprev_check_nanwarningswarn)selfr   s     b/var/www/html/suriana-translation/venv/lib/python3.12/site-packages/torch/autograd/anomaly_mode.py__init__zdetect_anomaly.__init__M   s@    ,,.	"#@@B8 		
    c                 D    t        j                  d| j                         y )NT)r
   set_anomaly_enabledr   r   s    r   	__enter__zdetect_anomaly.__enter__X   s    !!$7r   argsc                 X    t        j                  | j                  | j                         y Nr
   r   r   r   r   r   s     r   __exit__zdetect_anomaly.__exit__[       !!$))T-@-@Ar   Tr   N)__name__
__module____qualname____doc__r   r   objectr    r   r   r   r      s(    ?B	
8Bf B Br   c                   >    e Zd ZdZd
dededdfdZddZdeddfd	Zy)r   aT  Context-manager that sets the anomaly detection for the autograd engine on or off.

    ``set_detect_anomaly`` will enable or disable the autograd anomaly detection
    based on its argument :attr:`mode`.
    It can be used as a context-manager or as a function.

    See ``detect_anomaly`` above for details of the anomaly detection behaviour.

    Args:
        mode (bool): Flag whether to enable anomaly detection (``True``),
                     or disable (``False``).
        check_nan (bool): Flag whether to raise an error when the backward
                          generate "nan"

    moder   r   Nc                     t        j                         | _        t        j                         | _        t        j
                  ||       y r   )r
   r   r   r   r   r   )r   r*   r   s      r   r   zset_detect_anomaly.__init__p   s3    ,,.	#@@B!!$	2r   c                      y r   r(   r   s    r   r   zset_detect_anomaly.__enter__u   s    r   r   c                 X    t        j                  | j                  | j                         y r   r   r   s     r   r   zset_detect_anomaly.__exit__x   r    r   r!   r"   )	r#   r$   r%   r&   boolr   r   r'   r   r(   r   r   r   r   _   s<     3T 3d 3d 3
Bf B Br   )r&   r   r
   __all__r   r   r(   r   r   <module>r0      s6       1
2QB QBhB Br   