
    PgA)                     0   d Z ddgZddlmZmZ ddlZddlmZmZ ddl	m
Z
mZ 	 	 dded	ed
ee   dee   def
dZ	 	 	 dded	ee   d
ee   dee   deeeef   f
dZ	 	 	 dded	ee   d
ee   dee   deeeef   f
dZ	 	 	 dded	ee   ded
edeeeef   f
dZy)zBImplement various linear algebra algorithms for low rank matrices.svd_lowrankpca_lowrank    )OptionalTupleN)_linalg_utilsTensor)handle_torch_functionhas_torch_functionAqniterMreturnc                    |dn|}| j                         st        j                  |       n| j                  }t        j                  }t        j                  | j                  d   ||| j                        } || |      }|| |||      z
  }t
        j                  j                  |      j                  }t        |      D ]  }	 || j                  |      }|| ||j                  |      z
  }t
        j                  j                  |      j                  } || |      }|| |||      z
  }t
        j                  j                  |      j                  } |S )a  Return tensor :math:`Q` with :math:`q` orthonormal columns such
    that :math:`Q Q^H A` approximates :math:`A`. If :math:`M` is
    specified, then :math:`Q` is such that :math:`Q Q^H (A - M)`
    approximates :math:`A - M`. without instantiating any tensors
    of the size of :math:`A` or :math:`M`.

    .. note:: The implementation is based on the Algorithm 4.4 from
              Halko et al., 2009.

    .. note:: For an adequate approximation of a k-rank matrix
              :math:`A`, where k is not known in advance but could be
              estimated, the number of :math:`Q` columns, q, can be
              choosen according to the following criteria: in general,
              :math:`k <= q <= min(2*k, m, n)`. For large low-rank
              matrices, take :math:`q = k + 5..10`.  If k is
              relatively small compared to :math:`min(m, n)`, choosing
              :math:`q = k + 0..2` may be sufficient.

    .. note:: To obtain repeatable results, reset the seed for the
              pseudorandom number generator

    Args::
        A (Tensor): the input tensor of size :math:`(*, m, n)`

        q (int): the dimension of subspace spanned by :math:`Q`
                 columns.

        niter (int, optional): the number of subspace iterations to
                               conduct; ``niter`` must be a
                               nonnegative integer. In most cases, the
                               default value 2 is more than enough.

        M (Tensor, optional): the input tensor's mean of size
                              :math:`(*, m, n)`.

    References::
        - Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding
          structure with randomness: probabilistic algorithms for
          constructing approximate matrix decompositions,
          arXiv:0909.4061 [math.NA; math.PR], 2009 (available at
          `arXiv <http://arxiv.org/abs/0909.4061>`_).
       dtypedevice)
is_complex_utilsget_floating_dtyper   matmultorchrandnshaper   linalgqrQrangemH)
r   r   r   r   r   r   RXr   is
             U/var/www/html/suriana-translation/venv/lib/python3.12/site-packages/torch/_lowrank.pyget_approximate_basisr&      s#   b AEE01F%%a(AGGE]]FAGGBK%AA
 	q!A}q!A5\ !144O=F144O#ALLOOA  1aL=F1aL ALLOOA  ! H    c                 &   t         j                  j                         se| |f}t        t	        t
        |            j                  t         j                  t        d      f      s t        |      rt        t        || |||      S t        | |||      S )a  Return the singular value decomposition ``(U, S, V)`` of a matrix,
    batches of matrices, or a sparse matrix :math:`A` such that
    :math:`A \approx U \operatorname{diag}(S) V^{\text{H}}`. In case :math:`M` is given, then
    SVD is computed for the matrix :math:`A - M`.

    .. note:: The implementation is based on the Algorithm 5.1 from
              Halko et al., 2009.

    .. note:: For an adequate approximation of a k-rank matrix
              :math:`A`, where k is not known in advance but could be
              estimated, the number of :math:`Q` columns, q, can be
              choosen according to the following criteria: in general,
              :math:`k <= q <= min(2*k, m, n)`. For large low-rank
              matrices, take :math:`q = k + 5..10`.  If k is
              relatively small compared to :math:`min(m, n)`, choosing
              :math:`q = k + 0..2` may be sufficient.

    .. note:: This is a randomized method. To obtain repeatable results,
              set the seed for the pseudorandom number generator

    .. note:: In general, use the full-rank SVD implementation
              :func:`torch.linalg.svd` for dense matrices due to its 10x
              higher performance characteristics. The low-rank SVD
              will be useful for huge sparse matrices that
              :func:`torch.linalg.svd` cannot handle.

    Args::
        A (Tensor): the input tensor of size :math:`(*, m, n)`

        q (int, optional): a slightly overestimated rank of A.

        niter (int, optional): the number of subspace iterations to
                               conduct; niter must be a nonnegative
                               integer, and defaults to 2

        M (Tensor, optional): the input tensor's mean of size
                              :math:`(*, m, n)`, which will be broadcasted
                              to the size of A in this function.

    References::
        - Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding
          structure with randomness: probabilistic algorithms for
          constructing approximate matrix decompositions,
          arXiv:0909.4061 [math.NA; math.PR], 2009 (available at
          `arXiv <https://arxiv.org/abs/0909.4061>`_).

    N)r   r   r   )r   jitis_scriptingsetmaptypeissubsetr   r
   r	   r   _svd_lowrank)r   r   r   r   
tensor_opss        r%   r   r   V   s}    j 99!!#V
3tZ()22\\4:&
 ,(Zau  Qeq11r'   c                    |dn|}| j                   dd  \  }}t        j                  }||j                  | j	                               }||k  r| j
                  } ||j
                  }t        | |||      } ||j
                  |       }|| ||j
                  |      z
  }t        j                  j                  |d      \  }	}
}|j
                  }|j                  |	      }	||k  r||	}}	|	|
|fS )N   r   r   F)full_matrices)
r   r   r   broadcast_tosizer!   r&   r   r   svd)r   r   r   r   mnr   r   BUSVhVs                r%   r/   r/      s     YAA7723<DAq]]F}NN1668$ 	1uDD=Aa%15AqttQA}qttQ||7HAq"
A	A1u!1a7Nr'   centerc           	         t         j                  j                         s=t        |       t         j                  ur"t        | f      rt        t        | f| |||      S | j                  dd \  }}|t        d||      }n/|dk\  r|t        ||      k  st        d| dt        ||             |dk\  st        d| d	      t        j                  |       }|st        | ||d
      S t        j                  |       r6t        | j                        dk7  rt        d      t         j                   j#                  | d      |z  }|j%                         d   }t        j&                  dt        |      |j(                  |j*                        }	||	d<   t        j,                  |	|j/                         |df|| j*                        }
t        j0                  | j                  dd d|fz   || j*                        }t         j                   j3                  |
|      j4                  }t        | |||
      S | j7                  dd      }t        | |z
  ||d
      S )a  Performs linear Principal Component Analysis (PCA) on a low-rank
    matrix, batches of such matrices, or sparse matrix.

    This function returns a namedtuple ``(U, S, V)`` which is the
    nearly optimal approximation of a singular value decomposition of
    a centered matrix :math:`A` such that :math:`A \approx U \operatorname{diag}(S) V^{\text{H}}`

    .. note:: The relation of ``(U, S, V)`` to PCA is as follows:

                - :math:`A` is a data matrix with ``m`` samples and
                  ``n`` features

                - the :math:`V` columns represent the principal directions

                - :math:`S ** 2 / (m - 1)` contains the eigenvalues of
                  :math:`A^T A / (m - 1)` which is the covariance of
                  ``A`` when ``center=True`` is provided.

                - ``matmul(A, V[:, :k])`` projects data to the first k
                  principal components

    .. note:: Different from the standard SVD, the size of returned
              matrices depend on the specified rank and q
              values as follows:

                - :math:`U` is m x q matrix

                - :math:`S` is q-vector

                - :math:`V` is n x q matrix

    .. note:: To obtain repeatable results, reset the seed for the
              pseudorandom number generator

    Args:

        A (Tensor): the input tensor of size :math:`(*, m, n)`

        q (int, optional): a slightly overestimated rank of
                           :math:`A`. By default, ``q = min(6, m,
                           n)``.

        center (bool, optional): if True, center the input tensor,
                                 otherwise, assume that the input is
                                 centered.

        niter (int, optional): the number of subspace iterations to
                               conduct; niter must be a nonnegative
                               integer, and defaults to 2.

    References::

        - Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding
          structure with randomness: probabilistic algorithms for
          constructing approximate matrix decompositions,
          arXiv:0909.4061 [math.NA; math.PR], 2009 (available at
          `arXiv <http://arxiv.org/abs/0909.4061>`_).

    )r   r@   r   r3   Nr2   r   zq(=z>) must be non-negative integer and not greater than min(m, n)=zniter(=z) must be non-negative integerr4   r   z8pca_lowrank input is expected to be 2-dimensional tensor)r3   )dimr      T)rB   keepdim)r   r)   r*   r-   r   r
   r	   r   r   min
ValueErrorr   r   r/   	is_sparselensparsesumindiceszerosr   r   sparse_coo_tensorvaluesonesmmmTmean)r   r   r@   r   r9   r:   r   ccolumn_indicesrK   C_t	ones_m1_tr   Cs                 r%   r   r      s#   D 99!!#7%,,&+=qd+C(aT1&  WWRS\FQy1aL1fc!Qi!RSVWXZ[S\R]^
 	
 QJ75')GHII%%a(EAq66qww<1WXXLLQE*Q.Q++ &&!((	
 $
%%QXXZ!QuQXX
 JJqwws|q!f4E!((S	LLOOC+..Aq33FFudF+AE1ET::r'   )r   N)r2   r   N)NTr   )__doc____all__typingr   r   r   r   r   r   torch.overridesr	   r
   intr&   r   r/   boolr    r'   r%   <module>r_      sm   H-
( "  1 E 	GG
G C=G 	G
 GX 	=2=2}=2 C==2 	=2
 666!"=2D 	} C= 	
 666!"H 	n;n;}n; n; 	n;
 666!"n;r'   