<html><head><meta name="color-scheme" content="light dark"></head><body><pre style="word-wrap: break-word; white-space: pre-wrap;"># coding=utf-8
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Chinese-CLIP model configuration"""

from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional


if TYPE_CHECKING:
    from ...processing_utils import ProcessorMixin
    from ...utils import TensorType

from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging


logger = logging.get_logger(__name__)


class ChineseCLIPTextConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate a
    Chinese CLIP model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the Chinese CLIP
    [OFA-Sys/chinese-clip-vit-base-patch16](https:
        //huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the CHINESE_CLIP model. Defines the number of different tokens that can be represented
            by the `inputs_ids` passed when calling [`ChineseCLIPModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`ChineseCLIPModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        pad_token_id (`int`, *optional*, defaults to 0):
            Padding token id.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.

    Example:

    ```python
    &gt;&gt;&gt; from transformers import ChineseCLIPTextConfig, ChineseCLIPTextModel

    &gt;&gt;&gt; # Initializing a ChineseCLIPTextConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
    &gt;&gt;&gt; configuration = ChineseCLIPTextConfig()

    &gt;&gt;&gt; # Initializing a ChineseCLIPTextModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
    &gt;&gt;&gt; model = ChineseCLIPTextModel(configuration)

    &gt;&gt;&gt; # Accessing the model configuration
    &gt;&gt;&gt; configuration = model.config
    ```"""

    model_type = "chinese_clip_text_model"
    base_config_key = "text_config"

    def __init__(
        self,
        vocab_size=30522,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=2,
        initializer_range=0.02,
        initializer_factor=1.0,
        layer_norm_eps=1e-12,
        pad_token_id=0,
        position_embedding_type="absolute",
        use_cache=True,
        **kwargs,
    ):
        super().__init__(pad_token_id=pad_token_id, **kwargs)

        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range
        self.initializer_factor = initializer_factor
        self.layer_norm_eps = layer_norm_eps
        self.position_embedding_type = position_embedding_type
        self.use_cache = use_cache


class ChineseCLIPVisionConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate an
    ChineseCLIP model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the ChineseCLIP
    [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        projection_dim (`int`, *optional*, defaults to 512):
            Dimensionality of text and vision projection layers.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
    Example:
    ```python
    &gt;&gt;&gt; from transformers import ChineseCLIPVisionConfig, ChineseCLIPVisionModel

    &gt;&gt;&gt; # Initializing a ChineseCLIPVisionConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
    &gt;&gt;&gt; configuration = ChineseCLIPVisionConfig()

    &gt;&gt;&gt; # Initializing a ChineseCLIPVisionModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
    &gt;&gt;&gt; model = ChineseCLIPVisionModel(configuration)

    &gt;&gt;&gt; # Accessing the model configuration
    &gt;&gt;&gt; configuration = model.config
    ```"""

    model_type = "chinese_clip_vision_model"
    base_config_key = "vision_config"

    def __init__(
        self,
        hidden_size=768,
        intermediate_size=3072,
        projection_dim=512,
        num_hidden_layers=12,
        num_attention_heads=12,
        num_channels=3,
        image_size=224,
        patch_size=32,
        hidden_act="quick_gelu",
        layer_norm_eps=1e-5,
        attention_dropout=0.0,
        initializer_range=0.02,
        initializer_factor=1.0,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.projection_dim = projection_dim
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_channels = num_channels
        self.patch_size = patch_size
        self.image_size = image_size
        self.initializer_range = initializer_range
        self.initializer_factor = initializer_factor
        self.attention_dropout = attention_dropout
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act


class ChineseCLIPConfig(PretrainedConfig):
    r"""
    [`ChineseCLIPConfig`] is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used
    to instantiate Chinese-CLIP model according to the specified arguments, defining the text model and vision model
    configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the
    Chinese-CLIP [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16)
    architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`ChineseCLIPTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`ChineseCLIPVisionConfig`].
        projection_dim (`int`, *optional*, defaults to 512):
            Dimensionality of text and vision projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The initial value of the *logit_scale* parameter. Default is used as per the original ChineseCLIP
            implementation.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    &gt;&gt;&gt; from transformers import ChineseCLIPConfig, ChineseCLIPModel

    &gt;&gt;&gt; # Initializing a ChineseCLIPConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
    &gt;&gt;&gt; configuration = ChineseCLIPConfig()

    &gt;&gt;&gt; # Initializing a ChineseCLIPModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
    &gt;&gt;&gt; model = ChineseCLIPModel(configuration)

    &gt;&gt;&gt; # Accessing the model configuration
    &gt;&gt;&gt; configuration = model.config

    &gt;&gt;&gt; # We can also initialize a ChineseCLIPConfig from a ChineseCLIPTextConfig and a ChineseCLIPVisionConfig

    &gt;&gt;&gt; # Initializing a ChineseCLIPTextConfig and ChineseCLIPVisionConfig configuration
    &gt;&gt;&gt; config_text = ChineseCLIPTextConfig()
    &gt;&gt;&gt; config_vision = ChineseCLIPVisionConfig()

    &gt;&gt;&gt; config = ChineseCLIPConfig.from_text_vision_configs(config_text, config_vision)
    ```"""

    model_type = "chinese_clip"
    sub_configs = {"text_config": ChineseCLIPTextConfig, "vision_config": ChineseCLIPVisionConfig}

    def __init__(
        self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
    ):
        # If `_config_dict` exist, we use them for the backward compatibility.
        # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
        # of confusion!).
        text_config_dict = kwargs.pop("text_config_dict", None)
        vision_config_dict = kwargs.pop("vision_config_dict", None)

        super().__init__(**kwargs)

        # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
        # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
        # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
        if text_config_dict is not None:
            if text_config is None:
                text_config = {}

            # This is the complete result when using `text_config_dict`.
            _text_config_dict = ChineseCLIPTextConfig(**text_config_dict).to_dict()

            # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
            for key, value in _text_config_dict.items():
                if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
                    # If specified in `text_config_dict`
                    if key in text_config_dict:
                        message = (
                            f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
                            f'The value `text_config_dict["{key}"]` will be used instead.'
                        )
                    # If inferred from default argument values (just to be super careful)
                    else:
                        message = (
                            f"`text_config_dict` is provided which will be used to initialize `ChineseCLIPTextConfig`. "
                            f'The value `text_config["{key}"]` will be overridden.'
                        )
                    logger.info(message)

            # Update all values in `text_config` with the ones in `_text_config_dict`.
            text_config.update(_text_config_dict)

        if vision_config_dict is not None:
            if vision_config is None:
                vision_config = {}

            # This is the complete result when using `vision_config_dict`.
            _vision_config_dict = ChineseCLIPVisionConfig(**vision_config_dict).to_dict()
            # convert keys to string instead of integer
            if "id2label" in _vision_config_dict:
                _vision_config_dict["id2label"] = {
                    str(key): value for key, value in _vision_config_dict["id2label"].items()
                }

            # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
            for key, value in _vision_config_dict.items():
                if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
                    # If specified in `vision_config_dict`
                    if key in vision_config_dict:
                        message = (
                            f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
                            f'values. The value `vision_config_dict["{key}"]` will be used instead.'
                        )
                    # If inferred from default argument values (just to be super careful)
                    else:
                        message = (
                            f"`vision_config_dict` is provided which will be used to initialize "
                            f'`ChineseCLIPVisionConfig`. The value `vision_config["{key}"]` will be overridden.'
                        )
                    logger.info(message)

            # Update all values in `vision_config` with the ones in `_vision_config_dict`.
            vision_config.update(_vision_config_dict)

        if text_config is None:
            text_config = {}
            logger.info("`text_config` is `None`. Initializing the `ChineseCLIPTextConfig` with default values.")

        if vision_config is None:
            vision_config = {}
            logger.info("`vision_config` is `None`. initializing the `ChineseCLIPVisionConfig` with default values.")

        self.text_config = ChineseCLIPTextConfig(**text_config)
        self.vision_config = ChineseCLIPVisionConfig(**vision_config)

        self.projection_dim = projection_dim
        self.logit_scale_init_value = logit_scale_init_value
        self.initializer_factor = 1.0
        self.initializer_range = 0.02

    @classmethod
    def from_text_vision_configs(
        cls, text_config: ChineseCLIPTextConfig, vision_config: ChineseCLIPVisionConfig, **kwargs
    ):
        r"""
        Instantiate a [`ChineseCLIPConfig`] (or a derived class) from Chinese-CLIP text model configuration and
        Chinese-CLIP vision model configuration. Returns:
            [`ChineseCLIPConfig`]: An instance of a configuration object
        """

        return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)


class ChineseCLIPOnnxConfig(OnnxConfig):
    @property
    def inputs(self) -&gt; Mapping[str, Mapping[int, str]]:
        return OrderedDict(
            [
                ("input_ids", {0: "batch", 1: "sequence"}),
                ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
                ("attention_mask", {0: "batch", 1: "sequence"}),
            ]
        )

    @property
    def outputs(self) -&gt; Mapping[str, Mapping[int, str]]:
        return OrderedDict(
            [
                ("logits_per_image", {0: "batch"}),
                ("logits_per_text", {0: "batch"}),
                ("text_embeds", {0: "batch"}),
                ("image_embeds", {0: "batch"}),
            ]
        )

    @property
    def atol_for_validation(self) -&gt; float:
        return 1e-4

    def generate_dummy_inputs(
        self,
        processor: "ProcessorMixin",
        batch_size: int = -1,
        seq_length: int = -1,
        framework: Optional["TensorType"] = None,
    ) -&gt; Mapping[str, Any]:
        text_input_dict = super().generate_dummy_inputs(
            processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
        )
        image_input_dict = super().generate_dummy_inputs(
            processor.image_processor, batch_size=batch_size, framework=framework
        )
        return {**text_input_dict, **image_input_dict}

    @property
    def default_onnx_opset(self) -&gt; int:
        return 14


__all__ = ["ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig"]
</pre></body></html>